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In a recent communication (l) Bhadeshia gives an explanation of the 

tent-shaped surface relief effects observed in association with 

Widmansta tten ferrite ( 2, 3) and lower batni te. Based on his proposed 

explanation he concludes that the diffusional fcc-+ bee transformation tn 

steel takes place by a displacive mechanism. This conclusion is disputed 

by Aaronson (4) in a letter following that of Bhadeshia by showing that 

the experimentally observed orientation relationships are different from 

the one ( Nishyama,~·wassermann ( N-W) , necessary for Bhadeshia' s mechanism. 

He therefore holds that the transformation is purely diffusional and that 

11any attempts to understand diffusional phase transformations in terms 

of a shear mechanism are counterproductive." 

The purpose of the present note is (l) to show that Bhadeshia's 

mechanism seems to be based on a misinterpretation of the lattice 

symmetrie.'3 resulting from the fcc + bee transformation and cannot explain 

a tent-shaped surface relief even if the N-lv orientation relationship is 

followed, and (2) to suggest that attempts to formally understand 

diffusional phase transformations in terms of shear may not always be 

counterproductive. 

The conditions for crystallographic degeneracy 

The mechanism Bhadeshia proposes is based on the idea of crystal-

1ographic degeneracy which exists for fcc -+ hcp martensi tic transformations: 



the same crystal orientation of the hcp phase can be produced from a 

fixed fcc parent lattice in three distinct ways. This is shown in a two

dimensional sketch in Fig. l. The triangles represent a {111} plane in 

the fcc parent lattice, the hexagons are the basal planes of the hcp 

product and the arrows indicate the Burgers vectors of the Shockley 

partials which shear the fcc into an hcp lattice. Crystallographically, 

the three configurations shown in Figs. la, b 1 and c are identical because 

they are related by symmetry operations of both the matrix and the product, 

namely a 120° rotation, Macroscopically 1 hmvever 1 the three cases would 

give quite different results. The simple shear described by the direction 

of the Shockley partials does not share the threefold symmetry common to 

the matrix and the product. The macroscopic shape change in the direction 

of the arrows, which accompanies the transformation will therefore be 

different for a, b, and c. This is the degeneracy described by Bhadeshia. 

He shows that a combination of these three degenerate transformations 

allows for an overall accommodation of the macroscopic transformation 

strain. However, he then suggests that a similar degeneracy exists for 

the fcc-+ bee transformation. Using the N-W orientation relationship 

(shown in Fig. 2), he calculates misorientations between all 24 variants, 

searching for degenerate pairs, i.e. ferrite crystals in identical 

odentation but produced by different trans forma Uon strains. He finds 

two such degenerate pairs of variants which he calls NWl/NW2 and NW3/NW4. 

He suggests that these are responsible for the observed surface relief 

and that therefore the tr·ansformation must be displacive in natureo 

While the principle of his explanation is attractive, the specinc 

mechanism does not seem possible. One pair of variants, NW3/NW4, is not 



dege11er·ate since it consists c)f fer-rU;.e crysta:Js in d ff'erent orientations, 

Th:Ls is obv:l ous fr-om the fact that NW3 and NW/4 have ( 110) lel 

to two diffc~rent 11 s of the and thus make an e of 

70. instead of 60°. The other r, NW1/NW2, is crystallographically 

identical, but does not have the necessary difference in the shape 

deformattons. This is illustrated in 3 which 

sional projections of the N-W orientation relationship viewed along the 

coincident shown in the stereogram in . 2. F'or 

each of these poles, the symmetries of the fcc parent, the bee product, 

and the straln are indicated separa by the appropriate symbols. The 

two variants called NliJl and N~J2 are crystallographically :identical; 

[ 
., 

are related by a 90° rotation around OOlJ bee . ]b). careful 

of the (Fig. 2) jt can be seen that this 90° 

rotation of the product alone is t to a 180° rotation of parent 

and product togethec around the thir·d coincident pole ( [110] bee 

The latter rotation is the symmetry oper·aUon of the which produces 

NW2 from NWl. From . 3c it can be seen that around this axis, the 

product and the strain have the same two"~-fold rotational symme Hence 

the deformation will be identical for NWl and NW2 and their 

racy cannot account .Por any surface relief. 

This fa:Uure of an with the fcc + hcp trans-

for·ma tions can be understood in more general terms when analysed in 

the context of Cahn's (5) treatment of the symme of martensites. He 

distinguishes between the symmetries of the parent, the product and the 

strain and shows that the crysta:LJ.ographic symmetry of a transformation 

product is usual a subgroup of ( L e. lo\i'Je!~ than) both the symmetry of 

the and that of the strain. Only for fie values of the strain 



is it possible to form a supergroup ( L e. higher or equal symmetry) . 

This is the case for both types of transformation considered here as 

seen in Fig. 1 where a three-fold axis tn the parent becomes sixfold in 

the product, or in Fig. Jb where a twofold axis becomes fourfold. Thus 

both transformations lead to special configurations for which along 

certain axes the parent and the product have common symmetry operation. 

Fig. 1 and Figs. Jb and c show projections along these axes. However, 

j_n Fig. 3, the symmetry common to the two crystal lattices is also 

shared by the strain and hence by the shape deformation. Therefore 

these two crystallographically degenerate variants cannot have 

different shape strains and are unable to explain a tent-shaped surface 

relief effect, From Fig. l it is clear why this is different for the 

fcc+ hcp transformation. Here the symmetry of the strain is lower 

than the threefold axis common to parent and product lattices. It is 

now possible to state a general condition for the occurrence of a 

crystallographic degeneracy allowing an overall accommodation of the 

shape change - there must be at least one symmetry element common to 

parent and product (matrix and precipitate) which is not shared by the 

transformation strain. 

This is a rare occurrence since usually the symmetry of the product 

is lower than those of both parent and strain (5). Plotting symmetry 

diagrams for the principal axes of a transformation as illustrated 

in Fig, 3, shows that even the fcc+ bee transformation of the highest 

symmetry, the one describing the Bain orientation relationship, does 

not fulfill the given condition. The same is true for the low-symmetry 

K-S orientation relationship. 



Diffusional transformations and shear 

The symmetry arguments presented above agree with Aaronson's response 

since they give one more reason why Bhadeshia's conclusion of a shear 

mechanism for the transformation seems unfounded. His conclusion is differ~ 

ent, however, from the use of lattice shear as a purely formal aid in the 

understanding of the crystallography and morphology of precipitation" 

Martensite (6) and O~lattice (7) theories are both basically geometricaL 

Formally applied to diffusion controlled transformations, both theories 

have been very successful at times. In fact, Aaronson and co~workers 

have achieved remarkable agreement with experimentally observed interface 

structures and morphologies in diffusion controlled transformations using 

O~lattice theory (8) as well as graphical (9) and computerized (10) models 

similar to 0-lattice theory. The fact that the matrix algebra descripti.on 

of the total transformation may involve a shear does not necessarily 

mean that the transformation actually proceeds by a shear mechanism. For 

example, mathematically, the transformation matrix relating the parent 

to the product may look identical for a martensitic and a diffusion 

controlled transformation while the mechanism of transformation is 

fundamentally different. Traditionally, a successful analysis of a phase 

transformation by martensite theory has always involved the conclusion 

that the structural change proceeds martensitically. The paper by 

Bhadeshia (l) discussed above, Wayman and Van Landuyt's analysis of oxide 

plates in Ta (11), or Watson and McDougall's (2) study of Widmanstatten 

ferrite are typical examples of this tradition. In this sense, Hoekstra's 

(12) recent demonstration of the failure of martensite theor:Les in 

explaining the crystallography of bainite plates defeats only the notion 

that the bainite reaction proceeds by a martensitic shear mechanism. 



It does not preclude tbe use of basically geometrical methods which may 

involve a theoretical lattice shear in the analysis of this diffusion

controlled reaction. A formal tbeoretical treatment of phase trans~ 

formations in tbis manner has proved to be successful and will be 

published elsewhere . 

. summary 

ln response to a recent discussion in tbis journal concerning tent~ 

shaped surface-relief effects and the mechanism of formation of 

WidmansLatten ferrite and lower bainite? it was sbown that Bbadeshia's 

(l) explanation of surface reliefs is in error. A degeneracy of tbe 

fcc + hcp type does not exist for an fcc + bee transformation, Based on 

a distinction between tbe symmetries of the matrix, the transformation 

product and the strain (5), a general rule was derived for tbe occurrence 

of tbe type of crystallographic degeneracies described by Bhadesbia, The 

present analysis confirmed Aaronson's (4) contention that the trans

formation is not shear-like (martensitic) in nature but diffusion 

controlled. It was argued, however, that the formal treatment of 

d1ffusional transformations may involve a shear, 
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Fig. 1. Three different ways of producing the same hcp lattice from 

an fcc crystal by three different simple shears, indicated 

by arrows. The three configurations in a, b, and c are 

related by 120° rotations whi.ch leave the parent and the 

product unchanged but lead to distinct (shape) strains. 

Fig. 2. Nishi.yama-wassermann (N~W) orientati.on relationship showing a 

superposition of a (111) fcc projection (solid circles) and a 

(110) bee projection (open circles), The three coincident 

poles define the orientation relationship. The fcc poles are 

underlined. 

Fig. 3. Symmetry diagram of the three coincident poles of the N..W 

orientation relationship shown in Fig, 2. The (shape) strain 

has orthorhombic symmetry and hence three orthogonal axes with 

twofold symmetry. In contrast to FJ.g. 1, a rotation of 180° 

around the symmetry axes b, and c will leave parent, product and 

(shape) strain unchanged. 
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